Conversations with the Earth

Endapan mineral di Finlandia dan Swedia

Perjalanan saya ke lingkaran kutub utara

Atlas of ore minerals: my collection

Basic information of ore mineralogy from different location in Indonesia

Sketch

I always try to draw a sketch during hiking

Apa itu inklusi fluida?

Inklusi fluida adalah istilah yang digunakan untuk menjelaskan adanya fluida yang terperangkap selama kristal tumbuh. Gas dan solid juga bisa terperangkap di dalam mineral.

Situ Cisanti di Pengalengan, Bandung

50 km dari Bandung, Situ Cisanti terkenal karena menjadi sumber mata air sungai Citarum

Thursday, November 30, 2017

Geokimia - Elemen inkompatibel vs kompatibel, HFSE vs LILE

Ketika kerak bumi meleleh (melted), trace element akan menjadi indikator dari fase yang meleleh (the melt phase) atau fasa padatnya (solid mineral phase). Trace element yang mengikuti fase padat disebut sebagai elemen kompatibel (compatible element), sedangkan trace element yang menunjuukkan fase lelehannya disebut elemen inkompatibel (incompatible element).

Diagram antara ionic charge vs ionic radius lazim digunakan untuk membedakan antara elemen kompatibel dan inkompatibel. Elemen dengan charge cations >2 disebut HFSE (high field strength element), sedangkan elemen dengan charge cations <2 disebut LILE (large ion litophile elements). Elemen dengan radius ion kecil (LILE) termasuk sebagai elemen kompatibel. 
sumber: https://earthscience.stackexchange.com . MRFE (Mantle Rock Forming Elements) adalah elemen utama yang melimpah di kerak bumi. LILE mempunyai cationic charge <2, sedangkan HFSE >2

Karena jumlah "trace element" atau elemen jejak sangat sedikit dibanding major element atau elemen utama, elemen ini jarang muncul sebagai mineral melainkan akan mengisi crystal lattice dari mineral lain. Misalkan pada muskovit atau phengit, element Rb-Cs akan melimpah. 

Komposisi kimia dari batuan yang telah teralterasi atau termetamorfkan akan berubah, begitu pula dengan elemen-elemennya. Elemen LILE (ex. Cs, Rb, K, Rb, Ba) umumnya akan mobile , sedangkan elemen HFSE (ex. REE, Sc, Y, Zr, Hf, Ti, Nb, Ta, P) bersifat immobile. Sehingga untuk mengetahui komposisi batuan yang sudah teralterasi atau termetamorfkan, kita membutuhkan data elemen immobil. 

Diagram laba-laba atau spider diagram biasanya disusun berdasarkan ukuran dari kationnya (cationic charge), sehingga pada sumbu x, elemen disusun dari elemen mobile (LILE) baru kemudian elemen immbobile (HFSE).  Data dari LILE HFSE dan di plot, elemen ini harus di "normalisasi" terlebih dahulu dengan cara membagi komposisinya dengan suatu koefisien, misalnya terhadap kondrit (chondrite), primitive mantle, kerak bumi (crust), shale, dsb. Hasil dari normalisasi ini kemudian di plot sebagai sumbu "y". 

Beberapa referensi yang biasa digunakan antara lain dari Sun and McDonough (1989) , McDonough and Sun (1995), Rudnick and Fountain (1995), dsb.
Contoh analisa LILE dan HFSE di normalisasi dengan primitive mantle (Rudnick dan Fountain, 1995)
 
Contoh analisa REE di normalisasi menggunakan C1-chondrite (
Share:

Saturday, November 4, 2017

Inklusi fluida (step-by-step)

[last update 20 April 2020] --> materi kuliah "Inklusi fluida: dasar, metode, interpetasi dan aplikasi"

selamat siang kak, perkenalkan saya ade krisna , mahasiswa s1 di teknik geologi iTB. nah izin bertanya jika kakak ga sibuk. 
berhubung masih sangat minim bacaan tentang inklusi fluida , mau tanya sebenarnya peranan inklusi fluida sendiri dalam ananlisis mikrotermometri sendiri apa ya, trus outputnya apa ? apa suhu ketika fluida itu terperangkap ? dan aplikasinya buat eksplorasi geologi kira2 apa ya ?
makasih kak, maaf menggangu waktunya



salam
ade k.y.
12014082

Jawab
Halo brur Ade, salam kenal.

Makasih buat emailnya. Supaya lebih memudahkan ketika ada yang nanya hal ini, aku sudah resumekan pertanyaanmu di blog.

Halaman ini merupakan lanjutan dari tulisan yang lain tentang inklusi fluida untuk eksplorasi mineral, yang bisa dibaca disini.
Inklusi fluida itu sebutan untuk fluida yang terperangkap di mineral ketika mineral itu terbentuk. Inklusi fluida terbentuk tidak hanya di mineral transparan saja (kuarsa, feldspar, turmalin, kalsit, fluorit, dsb), tapi bisa juga terperangkap di mineral translusen (ex. sphalerit, kromit) dan mineral opak (ex. molibdenit, wolframit). Untuk  mineral transparan (dan translusen), kita bisa menggunakan mikroskop refraksi dengan penyinaran dari bawah, tapi untuk mineral opak, perlu digunakan infra red mikroskop.

Inklusi fluida bisa memberikan informasi, antara lain:
- salinitas
- temperatur minimum saat fluida terperangkap pada host mineral
- tekanan minimum saat fluida terperangkap pada host mineral. Dari temperatur dan tekanan, kita bisa membuat diagram PT, serta membuat isochore (isokorik)
- mendeteksi defek tidaknya host mineral (misal membandingkan antara antara batu mulia asli dengan yang sintetis).
- eksplorasi gas dan minyak (umumnya diamati pada batuan sedimen, mis. pada sebagai semen pada saat diagenesis, sehingga kita bisa tahu temperatur dan tekanan ketika fluida tersebut terperangkap. Inklusi yang mengandung akan berpendar jika diberikan lampu fluorescens)
- metamorphic petrology (bukan bidang saya, karena biasanya FI akan ter ekuilibrasi dan inklusi yang kita amati adalah yang terbentuk saat even retrograde).

1. Sebelum kita bisa mendapatkan informasi di atas, kita amati terlebih dulu fluid properties pada temperatur ruangan (20-30 derajat). Sama seperti pengamatan mineral, kita juga melakukan pengamatan petrografi. Kita harus bisa membedakan, mana yang debu, mana yang inklusi. Debu biasanya menempel di mineral, sedangkan inklusi fluida (saya singkat FI) berada di mineral. Walaupun lucu, tapi ini penting! 
2. Kita lihat, ada berapa fase yang terperangkap pada inklusi tersebut. 
a. Apakah ada mineral yang terperangkap di dalam fluida (mis. halit sangat lazim terperangkap pada fluida yang mempunyai salinitas tinggi, umumnya pada endapan yang terbentuk dari brine (MVT Pb Zn), atau endapan magmatik (mis. porfiri Cu-Au-Mo)) apakah di dalam fluida.
b. ada berapa fase (misal hanya 1 fase liquid [L] atau gas [V], atau liquid+gas [L+V], atau mungkin malah lebih dari 2 fase [L+L+V]


c. Jika kita curiga apa isi gas tersebut, kita bisa mengecek dengan menggunakan alat yang bernama Raman spektroskopi, atau dengan menggunakan metode mikrotermometri (mis. jika kita curiga ada CO2 pada inklusi, kita mengecek homogenisasi temperatur dari CO2 pada suhu antara -66 hingga -56. CO2 murni akan terhomogenisasi pada suhu -56.6 derajat)

3. Tentukan paragenesis dari FI. Mana inklusi primer atau pertama kali ketika fluida terperangkap, mana yang terbentuk kedua, ketiga dsb. Umumnya inklusi primer terisolasi, sedangkan inklusi sekunder membentuk garis. Namun (PENTING), belum tentu semua inklusi yang membentuk garis adalah inklusi sekunder (ilustrasi menyusul). Jika kita tidak mengetahui apakah inklusi ini primer atau sekunder, saya cenderung ikut dengan usul seorang prof di Kanada - Dan Kontak - dan menyebut inklusi sebagai undertemined inclusion. Nanti kita bisa menentukan paragenesisnya setelah mempunyai data pengukurannya.

4. Cari titik "nol", kemudian beri nama tiap inklusi fluida yang akan diukur. Pengalaman saya, membuat sketsa dari bentuk mineral, lokasi inklusi, akan memudahkan kita untuk memulai memberi nama inklusi-inklusi tersebut. Beri nama yang mudah saja, misal dengan kombinasi huruf dan angka (mis. FI-M01-2s, artinya, FI sampel M01 titik 2, inklusi sekunder). Buat dokumentasi sebanyaknya dan buat kolase!
5. Setelah tahu paragenesis dari inklusi fluida, kita hitung fraksi volume (volume fraction). Paling mudah adalah memfokuskan dengan pada FI dengan habit yang regular (inklusi fluida berbentuk negatif, membulat, tabular). Kita bisa menghitung volume fraction inklusi irregular dengan data mikrotermometri. Dalam contoh ini, volume fraction inklusi ini sama dengan perimeter vapour/liquid x 100% = 213.628/546.170 x 100% = 39.11%

6. Kita mulai bisa memulai dengan menggunakan heating-freezing stage untuk mikrotermometri. Ingat! KALIBRASI terlebih dahulu. Jika menggunakan standar dari SynFlinc, maka umumnya kita mengkalibrasi dengan pure CO2 (-56.5 celcius), H2O murni (air murni akan meleleh pada suhu 0 derajat dan vapour akan menghilang pada suhu 374 celcius)

7. Data titik leleh es (Tm ice) didapatkan dengan membekukan inklusi dari suhu ruangan ke suhu rendah (misalnya -60 derajat, kita asumsikan tidak ada gas), kemudian naik perlahan-lahan sampai es tersebut leleh. Temperatur ini bisa dihitung dengan persamaan dari Bodnar dan Vityk 









Tapi ketika ketika ada CO2 di inklusi yang kita amati, kita perlu menuju titik yang lebih rendah lagi (mis. -120 celcius), kemudian melihat transisi fase untuk mengamati temperatur melting CO2 (-65 - 56), kedian homogenisasi temperatur liquid (mis. antara -15 hingga 0). Ada kalanya muncul fase baru bernama klatrat (clathrate) atau gas hidrat. Saya jelaskan lain kali, sementara ilustrasi klatrat dan homogenisasi CO2 dulu.


8. Setelah mendapatkan temperatur leleh (Tm ice), kita naikkan temperatur hingga vapour menghilang. Temperatur itu adalah temperatur minimum ketika fluida itu terperangkap. Pada endapan epitermal, Tm berkisar antara 100an hingga 350 (mengapa?  karena kontrol utama pada endapan epitermal adalah ligan bisulfida [HS-], dimana emas akan terbawa dengan ligan tersebut). Sebaliknya, endapan porfiri akan mempunyai titik homogenisasi yang lebih tinggi, temperatur homogenisasi akan lebih tinggi, bahkan mencapai 500-600 derajat. Emas tidak larut bersama bisulfida, namun klorida (AuCl-). Pada tipe endapan lain, misalnya MVT, sedex, carbonate hosted, umumnya homogenisasi temperaturnya lebih rendah daripada epitermal.

Ilustrasi di bawah saya buat untuk menentukan homogenisasi temperatur dari FI. Angka hitam menunjukkan temperatur.




Pada suhu 2015.5, semua vapour menghilang. Di gambar terakhir, semua fase gas menghilang dengan sempurna (Th= 201.5) 

9. Data yang didapat saat ini adalah temperatur dan salinitas

Ketika kita ingin mengetahui tekanan ketika terperangkap, perlu dilakukan pemodelan, dan disinilah diperlukan data volume fraction (baca langkah nomor 5) dan temperatur klatrat (jika terdapat CO2). Oh iya, melting temperature ice (Tm ice) pada inklusi yang mengandung CO2 tidak mencerminkan data salinitas sebenarnya, sehingga perlu dikoreksi dengan Th klatrat (-20 hingga 15 celcius) dan Th CO2 (rata-rata antara 15-31).


10. Diagram Haas (dengan input salinitas dan temperatur homogenisasi dari mikrotermometri) biasanya digunakan untuk endapan yang terbentuk pada pressure yang rendah (< 500 MPa) pada kedalaman yang dangkal (<2-3 km), mis epitermal atau geotermal. Endapan ini umumnya terbentuk pada kondisi boiling (pendidihan), sehingga emas dan logam akan lepas dari ligan dan terpresipitasi pada batuan samping atau vein. Tanda-tanda boiling, kita mempunyai fluida dengan komposisi liquid-gas pada FI yang bervariasi, dengan kata lain, volume fraction nya bervariasi. Diagram ini sangat tricky, sehingga TIDAK (pakai huruf tebal dan merah) semua data mikrotermometri yang kita dapat bisa di plot di diagram di bawah ini. Detailnya saya ulas di halaman ini . 

11. Dibandingkan dengan diagram Haas, ada metode lain yang lebih tepat untuk mengkoreksi data mikrotermometri kita, yaitu dengan menentukan koreksi terhadap temperatur terhadap tekanan (pressure correction). Data P-T digunakan untuk membuat isochore line, sehingga kita tahu kondisi terbentuknya endapan tersebut.  Dari sinilah pentingnya menghitung volume fraction, temperatur klatrat, temperatur CO2, ice melting temperature (Tm ice), Th(CO2) dan temperatur homogenisasi H2O.

Pada endapan yang terbentuk pada temperatur dan tekanan yang lebih tinggi, hasilnya tidak akan mencerminkan kondisi terbentuknya aslinya. Banyak freeware yang bisa digunakan, misalkan program ISOC oleh Ronald Bakker (MU Leoben atau grup Duan (Beijing, Cina) 
12. Data yang didapat bisa digunakan untuk menentukan tipe endapan yang sedang kita amati. Kita bisa bandingkan dengan literatur yang ada (misal, dari paper oleh Wilkinson tahun 2001). Endapan porfiri atau endapan yang terbentuk dari evaporasi umumnya mempunyai 3 fasa solid; endapan orogenik (umumnya, tapi tidak selalu) dicirikan dengan adanya gas, misalnya CO2-CH4-N2; endapan epitermal biasanya mempunyai salinitas rendah (< 5 % eq NaCl, bahkan beberapa di bawah 1)(referensi: Wilkinson 2001).

13. Lakukan koreksi antara temperatur homogenisasi dengan densitas. Misalnya dengan kurva isokor di bawah.

13.  Referensi bermanfaat (menurut saya) lainnya saya rangkum di halaman ini. 

14. Sorry for the long post. Here is potato.
Share:

Wednesday, October 25, 2017

Atlas mikroskopi bijih

Optical description for ore minerals (last update 29-11-2017)
All photomicrograph were taken from my own samples unless otherwise stated. The basic of optical petrography, interference color and Michel Lévy chartfluid inclusions and electron microscopy study are also available in this site by clicking the link above.

Semua fotomikrograf saya ambil dari koleksi pribadi kecuali saya indikasikan. Dasar dari petrografi, warna interferensi dan diagram Michel Lévy, inklusi fluida dan mikroskop elektron bisa dilihat dengan mengeklik tautan di atas.

Reflektivitas (reflectivity)
rasio antara cahaya awal dengan cahaya yang dipantulkan oleh mineral (R atau R%). Mineral transparan umumnya mempunyai reflektivitas rendah, sedangkan mineral logam mempunyai reflektivitas tinggi.
ex. dari terkecil-terbesar : quartz (5%), magnetite (20%), galena (43%), pyrite (55%).

Bireflektans (bireflectance)

Semua mineral dengan sistem kristal selain grup isometrik akan menunjukkan perubahan warna, yang disebut bireflektans. Bireflektans dinyatakan dalam intensitas sangat kuat hingga sangat lemah. Sebagai contoh:
Bireflektans sangat kuat: grafit, molibdenit, kovelit, stibnit
Bireflektans moderat: markasit, hematit, nikolit, kubanit, pyrrhotit
Bireflektans lemah: enargit, ilmenit, arsenopirit

Anisotropi (anisotropism)
Mineral dengan sistem kristal non-isometrik akan menunjukkan perubahan warna ketika diputar 360 derajat pada pengamatan nikol silang. Mineral tersebut disebut anisotropik. Ketika tidak ada perubahan warna, maka mineral disebut isotropik. Namun, pada kondisi tertentu, mineral dengan sistem kristal heksagonal atau tetragonal bisa saja menunjukkan sifat isotropik, jika mineral dipotong pada sumbu sejajar dengan sumbu kristalografisnya. Pada beberapa kondsi lain, mineral seperti pirit (isometrik) bisa mempunyai sifat anisotropik ketika: (i) tergores karena pemolesan tidak sempurna, (ii) mengandung unsur ikutan lain (misal pirit mengandung arsen, disebut sebagai arsenian pyrite)

Refleksi internal (internal reflection)
Mineral translusen ketika diamati dengan mikroskop, karena sifatnya yang meneruskan sebagian warna dari rekahannya, akan menunjukkan warna refleksi internal di antara kristalnya. Warna ini nampak seperti di bawah atau di bagian dalam dari mineral. Sebagai contoh:
  • Sfalerit : kuning hingga cokelat (kadang merah atau hijau) 
  • Sinabar: merah
  • Rutil: kuning hingga merah-cokelat
  • Anatase: biru 
  • Azurit: biru
  • Malasit: hijau
  • Kasiterit: kuning kecokelatan hingga kuning 
  • Hematit: merah darah
  • Wolframit: cokelat tua 
  • Kromit: cokelat sangat tua
Simbol dan keterangan:
PPL = Parallel Polarized Light (nikol sejajar, tanpa menggunakan polarisator mikroskop)
XPL = Crossed Polarized Light (nikol silang, menggunakan polarisator mikroskop)

IRON-BEARING MINERAL/ MINERAL PEMBAWA BESI
Magnetite-Ilmenite±Hematite (Halmahera, Indonesia)
Magnetite (grey white) with ilmenite show trellis-work fence. Small hematite (red internal reflection color) is on the bottom left. Picture 1 PPL,  picture 2 XPL.
Magnetit (abu-abu putih) dan ilmenit menunjukkan tesktur trellis. Hematit (refleksi internal kemerahan) di bagian ujung kiri bawah.
 ©Andy YA Hakim

Mushketovitization (Halmahera, Indonesia)
Replacement of hematite (Hem, grey with red internal reflection) by magnetite (Mag, dark grey) due to reduction processes. Picture 1 PPL,  picture 2 XPL. Magnetite is isotropic whik hematite is anisotropic.
Penggantian hematit (Hem, abu-abu dengan nuansa warna internal refleksi merah) oleh magnetit (Mag, abu-abu tua) karena reaksi reduksi (musketovitisasi). Gambar 1 pada nikol sejajar, gambar 2 pada nikol silang. Magnetit mempunyai sifat isotropik, sedangkan hematit anisotropik.
3Fe2O3 + H2 = 2Fe3O4 + H2O
©Andy YA Hakim

Martitization (Geunteut, Aceh, Indonesia)
Replacement of magnetite (Mag) by hematite (Hem) by oxidation. Pic 1 is crossed polarozation, picture 2 is parallel polarization.
Penggantian magnetit (Mag) oleh hematit (Hem) melalui reaksi oksidasi (martitisasi). Gambar 1 nikol silang, gambar 2 nikol sejajar.
Fe3O4 + 2H+ = Fe2O3 + Fe2+ + H2O
Photographs taken by ©Teti Indriati

Limonitization (Geunteut, Aceh, Indonesia)
Secondary iron-bearing minerals (limonite - FeO(OH), reddish brown) in a cavity of magnetite ore (grey white) by oxidation. Limonite has a strong yellow-red internal reflection in XPL. Picture 1 in PPL, picture 2 in XPL.
Mineral besi sekunder (limonit - FeO(OH), cokelat kemerahan) di rongga bijih magnetit (abu-abu) melalui proses oksidasi. Limonit mempunyai warna internal refleksi kuning kemerahan pada nikol silang. Gambar 1 nikol sejajar, gambar 2 nikol silang.
©Andy YA Hakim

COPPER-GOLD-BEARING MINERAL
MINERAL PEMBAWA TEMBAGA-EMAS
Gold, pyrite, enargite (Latimojong, Sulawesi, Indonesia)
Anhedral gold (bright yellow) grains in pyrite (pale yellow). Enargite (grey) precipitates in pyrite cracks. Picture 1 in PPL, picture 2 in XPL.
Butiran emas dengan tekstur anhedral (kuning cerah) mengisi rekahan pirit (kuning). Enargit (abu-abu) juga mengisi rekahan pirit. Gambar 1 nikol sejajar, gambar 2 nikol silang.
©Andy YA Hakim


Sphalerite, hessite, petzite (Halmahera, Indonesia)
Sphalerite ([Zn,Fe]S)(grey, transluscent in XPL with strong brown anisotropic color) with euhedral telluride minerals, hessite (Ag2Te, dark blue anisotropic color) and petzite (Ag3AuTe2, grey, weak anisotropic). (Sph=sphalerite, Hst=Hessite, Ptz=petzite). Picture 1 PPL, Picture 2 XPL.
Sfalerit ([Zn,Fe]S, abu-abu, translusen dengan warna anisotropik cokelat) berdampingan dengan mineral telurid anhedral, hessit (Ag2Te, biru tua dengan warna anisotropi biru) dan petzit (Ag3AuTe2, abu-abu, anisotropi lemah). (Sph=sfalerit, Hst=Hessit, Ptz=Petzit). Gambar 1 nikol sejajar, gambar 2 nikol silang.
 ©Andy YA Hakim

Chalcocite, covellite, tetrahedrite, pyrite (Halmahera, Indonesia)
Chalcocite (Chct, light blue), covellite (Cv, dark blue), tetrahedrite (Ttr, greyish-olive brown) and pyrite (Py, yellow). Oxidation of copper bearing minerals. Picture 1 PPL, picture 2 XPL. 
Kalkosit (Chct, biru muda), kovelit (Cv, biru tua), tetrahedrit (Ttr, abu-abu kecokelatan) dan pirit (Py, kuning).Oksidasi mineral pembawa tembaga. Gambar 1 nikol sejajar, gambar 2 nikol silang.
©Andy YA Hakim

Covellite
Covellite (dark blue, CuS) has intense red internal reflection. Light blue mineral is probably digenite (Cu9S5).  Picture 1 PPL, picture 2 XPL. 
Kovelit (biru tua, CuS) mempunyai warna refleksi dalam merah yang kuat. Mineral berwarna biru muda kemungkina digenit. Gambar 1 nikol sejajar, gambar 2 nikol silang.
 ©Andy YA Hakim

Rutile, pyrite, covellite, chalcocite (Halmahera, Indonesia)
Replacement of pyrite (Py, yellow) by rutile (Rt, grey, TiO2). Secondary copper minerals (covellite-Cv with minor chalcocite-Cct) are on the pyrite crack. Gray elongated mineral in pyrite grain are rutile and magnetite (grey, isotropic in XPL). Rutile has strong yellow anisotropy color in XPL. Picture 1 PPL, picture 2 XPL. 
Penggantian pirit (Py, kuning) oleh rutil (Rt, abu-abu, TiO2). Mineral tembaga sekunder (kovelit dan minor kalkosit) mengisi retakan pada pirit. Mineral dengan habit memanjang berwarna abu-abu rutil dan minor magnetit (abu-abu, isotropik). Rutil dicirikan dengan warna anisotropik kuning yang kuat pada pengamatan nikol silang. Gambar 1 nikol sejajar, gambar 2 nikol silang.
 ©Andy YA Hakim


Chalcopyrite, pyrite, tetrahedrite, tennantite, covellite (Latimojong, Sulawesi, Indonesia)
Replacement of chalcopyrite (Ccp, bright yellow) by covellite (Cv, blue), which in turn replaced by sulphosalts or fahlore (tetrahedrite-tennantite)(Ttr - tetrahedrite=grey to brown, Tnt - tennanite=grey). Late hydrothermal pyrite (pale yellow) has an euhedral texture. Picture 1 PPL, picture 2 XPL.
Penggantian kalkopirit (kuning cerah) oleh kovelit (biru), yang kemudian di gantikan oleh tetrahedrit dan tennantit (tetrahedrit=abu-abu kecokelatan, tenanntit=abu-abu). Hidrotermal pirit (kuning) mempunyai tekstur euhedral. Gambar 1 nikol sejajar, gambar 2 nikol silang.
©Andy YA Hakim

Chalcopyrite, sphalerite (Latimojong, Sulawesi, Indonesia)
"Chalcopyrite disease" in sphalerite (Sph, grey, high internal reflections).Picture 1 PPL, picture 2 XPL.
Bintik kalkopirit (Ccp) pada mineral sfalerit (Sph, abu-abu, refleksi internal intensif). Gambar 1 nikol sejajar, gambar 2 nikol silang.
©Andy YA Hakim


Bornite, chalcopyrite, covellite, pyrite (Blitar, East Java, Indonesia)
Chalcopyrite (bright yellow) occurs as a an exsolution, lenses, flames in bornite (orange). Pyrite (yellow) occurs as anhedral texture. The outer rims of those assemblages are replaced by covellite (blue).Picture 1 PPL, picture 2 XPL.

Kalkopirit (kuning cerah) membentuk eksolusi, lensa dan menyerupai api pada bornit (jingga). Pirit mempunyai tekstur anhedral. Bagian luar dari mineral tersebut digantikan oleh kovelit (biru).Gambar 1 nikol sejajar, gambar 2 nikol silang.
©Andy YA Hakim

Malachite (unknown, Sudan)
Malachite (green) with colloform texture in quartz vein.Colorless mineral is quartz. Picture 1 PPL, picture 2 XPL.
Malasit (hijau) menunjukkan tekstur colloform. Mineral tak berwarna di sekitar malasit adalah kuarsa. Gambar 1 nikol sejajar, gambar 2 nikol silang.

Photographs taken by ©Teti Indriati

BASE METAL - LOGAM DASAR
Galena, pyrite, sphalerite (Dairie, North Sumatera, Indonesia)
Replacement of galena (grey white) by sphalerite (dark grey, strong internal reflection) along pyrite (yellow) grains. Inclusions in pyrite grain (middle of the photograph) is probably quartz. Picture 1 PPL, picture 2 XPL.
Penggantian galena (abu-abu putih) oleh sfalerit (abu-abu tua, refleksi internal yang kuat) di antara butiran pyrite (kuning). Inklusi mineral pada pirit kemungkinan kuarsa.Gambar 1 nikol sejajar, gambar 2 nikol silang.
 ©Andy YA Hakim

Galena - pyrite, Awak Mas, Sulawesi
Galena (whitish grey, triangular facet texture) is earlier than in pyrite (pale yellow) as indicated by small grain of galena (middle right) trapped in a pyrite grain. PPL.
Galena (putih keabuan, tekstur triangular faset) lebih awal dibanding pirit (kuning pucat) dan diindikasikan dari adanya inklusi galena pada mineral pirit (bagian kanan tengah dari gambar). Gambar nikol sejajar


Chromite, chlorite, pumpellyite (Latimojong, Sulawesi, Indonesia)

Chromite (Chr, brown reflectance color) surrounded by chlorite (Chl, colorless) and pumpellyite (Pmp, green elongated grain). Picture 1-2 PPL
Kromit (Chr, warna refleksi cokelat) dikelilingi klorit (Chl, tidak berwarna) dan pumpelyit (Pmp, habit memanjang, hijau. Gambar nikol sejajar
(double polished thin section)
(polished section)

Galena*
Wolframite*
Cassiterite*
Stannite*
*to be added soon

Suggested references
- Table for the determination of common opaque minerals (Spry and Gedlinske, 1987)
Panduan untuk menentukan mineral opak (Spry and Gedlinske ,1987)

Online sources
- Ore minerals guidance - Udo Neumann
- Study of Ore Minerals in Reflected Light - S Farooq
- Atlas of ore minerals webpage - Ixer and Duller

Share:

Blog Archive

Kontak ke Penulis

Name

Email *

Message *