Conversations with the Earth

Wednesday, July 10, 2013

Analisis Mineral Butir, Derajat Liberasi, Tekstur Mineral dan Kadar Mineral

Bagi orang-orang yang banyak berkutat pada mineral, tentu tak asing mendengar istilah analisis mineral butir, atau yang disebut sebagai grain counting. Ketika diartikan ke dalam Bahasa Indonesia pun, maknanya tidak jauh dari maksud sebenarnya. Grain adalah butiran, counting adalah menghitung butiran mineral. Jika diartikan, maka grain counting adalah salah satu metode yang digunakan untuk mengetahui kadar dari suatu sampel (konsentrat mineral berat, sayatan poles, maupun sayatan tipis), dengan membandingkan antara persen volume suatu mineral tertentu terhadap mineral secara keseluruhan. 

Umumnya analisa ini dilakukan untuk mendeteksi mineral-mineral logam, yang mempunyai densitas yang lebih besar dibanding mineral pengotor. Cara untuk mendapatkan mineral berat dapat dilakukan dengan pengkonsentrasian mineral berat seperti dengan jig, flotasi, maupun yang paling sederhana, dengan pendulangan. Sebagai contoh, kuarsa mempunyai nilai SG 2,59-2,63, akan sangat mudah dipisahkan dengan magnetit yang mempunyai SG 5,17-5,19, dengan pirit yang mempunyai SG 4,95-5,10, atau pun dengan emas yang mempunyai SG 19.

Kembali kepada grain counting, apa yang akan digunakan sebagai perhitungan? Pertama-tama, kita harus mengenal konsep mineral dengan butir bebas dan mineral dengan butir terikat. Mineral dengan butir bebas artinya mineral yang akan kita amati, telah terliberasi/ terbebaskan dan tidak berikatan dengan mineral lain. Adanya proses kominusi (penghancuran) dan liberasi bertujuan untuk memisahkan mineral berharga dengan mineral pengotornya pada ukuran yang optimal (mineral liberation). Rumus dari derajat liberasi adalah:
Keterangan :
α = derajat liberasi
NA = jumlah butir mineral A
SG = Specific Gravity
Sebagai contoh gambar liberasi pada mineral sulfida. Pada kasus 1, mineral sulfida akan mudah dibebaskan, dibandingkan pada kondisi 2, dimana mineral sulfida berada pada kondisi disseminated atau menyebar. Begitu pula ketika mineral sulfida muncul sebagai inklusi, maka perlu dilakukan adanya pemisahan hingga didapatkan butir sulfida yang dapat dibebaskan dari mineral pengotornya.(http://technology.infomine.com/enviromine/ard/Images%20Prediction/Sulphide%20Liberation.gif). 
Analisis grain counting dilakukan dengan cara menghitung jumlah butir tiap jenis mineral yang ditebarkan pada area-area berbentuk bujur sangkar memiliki luas area yang sama (lima atau tiga kotak) dan tersusun secara diagonal. Metode yang umum digunakan adalah metode 5 kotak untuk butiran yang relatif kasar dan metode 3 kotak untuk butiran yang relatif halus.
Metode 3 kotak (2.5 cm x 2.5cm) dan 5 kotak (1cm x 1cm)

Sebelum dilakukan perhitungan, perlu dilakukan sizing ukuran dari mineral, dimana ukuran mineral harus relatif seragam satu sama lain. Butiran yang akan di counting harus memiliki ukuran yang relatif seragam atau berasal dari satu fraksi ukuran tertentu, dengan asumsi bahwa butiran yang berasal dari fraksi ukuran yang sama akan memiliki volume yang sama, sehingga jika diketahui jumlah butiran masing-masing mineral dari analisis grain counting, kemudian berat jenisnya diketahui, maka hasil perkaliannya analog dengan berat masing-masing mineral, dengan demikian kadar masing-masing mineral dalam sampel dapat dihitung dalam % berat.
Berikut beberapa contoh mineral yang pernah saya analisa untuk keperluan analisis mineral butir pada konsentrat mineral dulang.

Mineral magnetit berwarna kehitaman dan mineral silika yang berwarna putih kusam  (sampel dari Blitar, Jawa Timur)
Mineral magnetit berwarna kehitaman dan mineral silika yang berwarna putih kusam, tampak mineral emas berwarna emas (sampel aluvial dari Sulawesi Tenggara, Jawa Timur)
Mineral emas yang teridentifikasi dari sampel konsentrat aluvial  (lokasi sampel Bangka Belitung)
Mineral zirkon, Ilmenit sebagai mineral utama, serta mineral titanit berwarna orange-kemerahan sebagai mineral jejak (lokasi sampel Bangka Belitung)
Emas aluvial bersama-sama ilmenit dan kuarsa (lokasi sampel Sulawesi Tenggara)

Amstutz, 1961 membagi klasifikasi geometri untuk tekstur mineral dan karakteristik liberasinya (dikutip dari http://www.cps-amu.org/sf/notes/lect12.htm)
a. Texture/Interlocking: Equigranular, straight, rectilinear, cuspate margins. Simple locking (Fig 1).
Liberation Properties: Fairly easy liberation. Common occurrence especially in orthomagmatic and highly metamorphosed and recrystallized ores. Also in ores showing successive depositional sequence.

b.Texture/Interlocking: Mutually curving boundaries with negligible interpenetration. Simple locking (Fig 2).
Liberation Properties: Fairly easy liberation. Common occurrence in simultaneously crystallized ores where interfacial free energies are similar.

c. Texture/Interlocking: Mottled, spotty, careous, with partial penetration. Relatively simple locking (Fig 3).
Liberation Properties: Fairly easy liberation. Common occurrence in ores where interreplacement processes have been active.

d. Texture/Interlocking: Graphic, myrmekitic, visceral locking. Deep micropenetration (Fig 4). 
Liberation Properties: Complete liberation difficult or impossible. Not common as a major texture in ores. Produced by exsolution and replacement. Eg. Galena/sphalerite and chalcocite/bornite.

e.Texture/Interlocking: Disseminated, drop like, emulsion, eutectoidal locking. Finely dispersed phases (Fig 5)
Liberation Properties: Complete liberation difficult or impossible; chemical treatment often required. Common occurrence by exsolution (left) Au/arsenopyrite, chalcopyrite/sphalerite; by replacement (right) pyrite/sphalerite.

f. Texture/Interlocking: Intergranular rim; coating mantled, enveloped, atoll-like locking (Fig 6).
Liberation Properties: Liberation may be difficult if free grain is continuously enveloped by layer. Not uncommon, often formed by replacement reaction. Eg. Hematite film on gold; chalcocite or covellite on pyrite, galena or sphalerite.

g. Texture/Interlocking: Concentric, spherulitic, scalloped, colloform-layered locking (Fig 7).
Liberation Properties: Liberation fairly difficult or difficult; common occurrence in Fe, Mn, and Al ores. Also U (pitchblende) intergrained with sulfide. Usually associated with colloidal precipitation.

h. Texture/Interlocking: Planar, lamellar, sandwich-type locking. Lamellae may vary in size (Fig 8).
Liberation Properties: Liberation fairly easy to variable. Produced by exsolution (Eg. Cubanite/chalcopyrite, ilmenite/magnetite). Also by replacement (Eg. Magnetite and hematite).

i. Texture/Interlocking: Reticulate (net-like) boxwork. Finely interpenetrating locking (Fig 9).
Liberation Properties: Liberation variable to difficult. Common occurrence by replacement (Eg.bornite/chalcopyrite, anglesite/covellite/galena). Also by exsolution (Eg. hematite/ilmenite/ magnetite).

Follow me: @andyyahya
Share:

3 comments:

  1. I absolutely love your blog.. Pleasant colors & theme.
    Did you create this site yourself? Please reply back as I'm hoping to create my
    very own website and want to learn where you got this from or exactly what the theme is named.
    Thank you!

    Here is my web page :: google.com []

    ReplyDelete
  2. Beda mic dengan oc balance ap ya?

    ReplyDelete
  3. Beda mic dengan oc balance ap ya?

    ReplyDelete

Komentar akan dimoderasi oleh penulis sebelum tayang. Terima kasih

Blog Archive

Kontak ke Penulis

Name

Email *

Message *