Conversations with the Earth

Endapan mineral di Finlandia dan Swedia

Perjalanan saya ke lingkaran kutub utara

Atlas of ore minerals: my collection

Basic information of ore mineralogy from different location in Indonesia

Sketch

I always try to draw a sketch during hiking

Apa itu inklusi fluida?

Inklusi fluida adalah istilah yang digunakan untuk menjelaskan adanya fluida yang terperangkap selama kristal tumbuh. Gas dan solid juga bisa terperangkap di dalam mineral.

Situ Cisanti di Pengalengan, Bandung

50 km dari Bandung, Situ Cisanti terkenal karena menjadi sumber mata air sungai Citarum

Showing posts sorted by date for query besi. Sort by relevance Show all posts
Showing posts sorted by date for query besi. Sort by relevance Show all posts

Sunday, September 4, 2016

Untuk abah dan umi disana

"Ada orang yang menghabiskan waktunya berziarah ke Mekkah
Ada orang yang menghabiskan waktunya berjudi di Miraza
dst"

2005, Bioskop Sarinah, Malang. Disana saya pertama kali kenalan dengan nama Soe Hok Gie. Seperti anak muda yang sedang mencari sosok panutan, nama dia langsung melesat ke nomor satu. Perlahan, ada nama-nama lain yang mengisi daftar itu, keluar masuk. Norman Edwin, Tan Malaka, Paimo, Jendral Hoegeng dan yang sempat membekas agak lama, Pramoedya. Beberapa karya sastra lain sudah masuk ke kardus yang sekarang ada di rumah bapak ibu mertua saya di Wonosobo. Biografi Nabi Muhammad, karya STA, hadiah dari adik saya tentang guyonan Cak Nun dan Emha, biografi Sutan Sjahrir, asal usul komunis karya Ruth Mcvey, dll, semua tersimpan di kardus itu. Saya kepikiran buat bikin perpustakaan kecil-kecilan, trus di data dan di cap, siapa tahu nanti bisa besar jadi seperti perpustakaan pataba (perpustakaan anak semua bangsa milik Pram) di Blora atau perpustakaan bung hatta di Bukit Tinggi. Mimpi ga salah toh.

Kembali ke Soe Hok Gie. 
"Ada orang yang menghabiskan waktunya berziarah ke Mekkah
Ada orang yang menghabiskan waktunya berjudi di Miraza
dst"

Penulis itu biasanya rajin membaca buku, tanpa membaca, darimana bahan yang ditulisnya? Itu yang diajarkan oleh bapak untuk saya dan adik saya. Semasa kecil, saya dan adik paling senang kalau diajak ke toko buku di Jalan Majapahit, Malang, soalnya kami pasti dibelikan buku, entah komik, cerita anak atau buku-buku lain. Umur bertambah, ketertarikan tentang komik berkurang, akhirnya berubah jadi buku. Kami diajari untuk menyenangi membaca. Mulai buku fikih dan sejarah islam, novel, cerita hantu (goosebumps), komik, sastra, terserah, asal disesuaikan dengan umur kami saat itu. Saya jadi ingat, ketika teman-teman SD pada main tamagochi, saya ga dibelikannya, mendingan buat buku. Bahkan sampai sekarang, saya ga ngerti cara memainkannya seperti apa dan barang itu belum sempat terbeli hingga 2016 ini (entah masih ada yang jual ga ya).

Di rumah, bapak saya yang dosen teknik mesin sering dapat orderan membuat lemari buku dari papan. Saya masih ingat, sepulang dari kantor, bapak masih nandangi kerjaan lain, percetakan dan bengkel. Rumah saya lantai 2 dulu masih blabag kayu, dibuat bapak untuk urusan percetakan hot print. Cetak kartu nama (jaman dahulu), kertas undangan ada tulisan yang berwarna emas mengkilat, nah, itulah yang dikerjakan bapak saya sepulang kerja. Itu bagian percetakan, belum bagian perbengkelan. Di bagian depan rumah, bagian depan rumah kami ditutup triplek. Bengkel nya ukuran 4x4, dibuat untuk bengkel mesin dan produksi lemari kayu. Di bengkel, lantai penuh dengan skrap potongan besi dan oli. Yang masih saya ingat, ada mesin bubut, gergaji mesin otomatis, ragum, dll, semuanya dipakai untuk tambah-tambahan keluarga kami.

Soe Hok Gie lagi. 
"Ada orang yang menghabiskan waktunya berziarah ke Mekkah
Ada orang yang menghabiskan waktunya berjudi di Miraza
dst"

Kemarin orang tua saya berangkat ke Jeddah untuk melengkapi rukun islam ke-5, berangkat haji. Umur tabungan beliau sama dengan umur adik saya yang sebentar lagi insyaAllah jadi bapak. Ternyata beliau sudah mengumpulkannya sejak lama, dan ketika sudah lunas antriannya sudah cukup panjang, sehingga baru mendapat giliran tahun ini. Saya senang akhirnya abah umi bisa berangkat. Yang membekas buat saya pribadi, berarti dulu start mulai menabung dari umur kepala 3. Berarti itu semua dimulai dari percetakan, bengkel, bikin lemari, yang baru saya sadari semalam ketika saya nglilir sepertiga malam terakhir. 

Saya mengidolakan tokoh Gie, Pram, Paimo, Hatta, tapi saya sering lupa lupa, perjuangan bapak ibu saya ga kalah dengan orang-orang hebat tadi. Mas Paimo bisa melintasi 5 benua karena beliau sudah memulainya sejak jaman SMP, nyepeda antar kota, akhirnya bertambah antar propinsi. Saya lihat orangnya tekun dan teratur menyimpan barang-barang memorabilia jaman dulu, membuat saya juga kudu menerapkan ke hal yang sama, saya ga boleh lupa dengan asal saya. Kacang ora oleh ninggal lanjaranne.

Gie satu lagi
"Ada orang yang menghabiskan waktunya berziarah ke Mekkah
Ada orang yang menghabiskan waktunya berjudi di Miraza"

Alhamdulillah orang tua saya akhirnya berziarah Mekkah. Tentang Miraza, kenapa saya tulis berulang-ulang. Nama itu mengingatkan saya salah satu rumah makan favorit bapak saya di Pandaan, rumah makan Miraza. Bukan tentang judi.

Akhirnya, selamat menunaikan ibadah haji abah, umi.  
25 tahun pernikahan abah umi di Bromo, 2012
Gie untuk terakhir kali.
Ada orang yang menghabiskan waktunya berziarah ke Mekah
Ada orang yang menghabiskan waktunya berjudi di Miraza
Tapi, aku ingin habiskan waktuku di sisimu, sayangku
Bicara tentang anjing-anjing kita yang nakal dan lucu
Atau tentang bunga-bunga yang
manis di lembah Mendalawangi

Ada serdadu-serdadu Amerika yang mati kena bom di Danang
Ada bayi-bayi yang mati lapar di Biafra
Tapi aku ingin mati di sisimu, manisku
Setelah kita bosan hidup dan terus bertanya-tanya
Tentang tujuan hidup yang tak satu setan pun tahu

Mari sini, sayangku
Kalian yang pernah mesra, yang pernah baik dan simpati padaku
Tegaklah ke langit luas atau awan yang mendung
Kita tak pernah menanamkan apa-apa,
Kita takkan pernah kehilangan apa-apa

Catatan Seorang Demonstran- Soe Hok Gie*
[Selasa, 11 November 1969]
Share:

Monday, January 25, 2016

Aquarius, Gunung Besi dan Leoben



Tiga orang berjalan di pinggir sungai untuk menangkap ikan. Di tengah perjalanan, mereka menemukan ikan yang sedang terperangkap dalam jebakan ikan. Mereka melepaskannya, dan tiba-tiba ikan itu berubah menjadi Aquarius, Dewa(i) Hujan. Aquarius berjanji akan mengabulkan tiga permintaan untuk ketiga orang itu. Mereka harus memilih, emas untuk 10 tahun, perak untuk 100 tahun dan besi untuk selamanya. Aquarius pun mengarahkan telunjuknya ke sebuah gunung, dan seketika jadilah gunung itu menjadi gunung emas, gunung perak dan gunung besi.

Legenda Aquarius. Foto diambil di Prabichl, salah satu tempat terbaik untuk ski di Austria (foto koleksi pribadi) 
Aquarius dan kereta tambang. Lukisan Aquarius banyak dijumpai di antara kota Vordernberg dan kota Eisenerz (foto koleksi pribadi) 

Orang pertama memilih gunung emas, dan dalam waktu singkat dia menjadi orang kaya dan bergelimang harta dan anggur, akhirnya dia meninggal tidak lama setelah itu. Orang kedua mengalami nasib yang sama, bergelimang harta sehingga akhirnya dia harus kembali bekerja. Berbeda dengan orang ketiga, dimana dia yang memilih gunung besi memang harus berupaya berat di awal masa kerjanya, namun akhirnya dia dan keturunannya mendapatkan hasil yang banyak hingga saat ini. Dan, gunung besi itu bernama Erzberg (erz=bijih, dari bahasa Inggris "ore" , dan berg=gunung). Gunung itu terletak di kota Eisenerz (eisen=besi, erz=bijih), yang terletak 30 km di Utara di kota Leoben, tempat saya tinggal.
Erzberg saat winter (foto koleksi pribadi)

Erzberg merupakan tambang besi open pit terbesar di Eropa Tengah, dan sudah ditambang sejak jaman Romawi. Tambang ini juga merupakan asal mula berdirinya pabrik peleburan besi "voestalpine" (serupa dengan Krakatau Steel namun milik Austria), yang menjadi cikal bakal Montanuniversität Leoben yang dibangun pada tahun 1830. Pabrik pengolahannya berada di Donawitz, yang berjarak hanya 10 menit dari kampus Montan. Karena Erzberg inilah, kota Leoben menjadi cikal bakal kampus pertambangan dengan reputasi yang sangat baik.

Montan, merupakan kampus yang memiliki tradisi yang sangat kuat di bidang geologi, pertambangan dan perminyakan. Glück Auf adalah salam yang diucapkan hampir di semua negara berbahasa Jerman, ketika dua orang penambang bertemu, dengan harapan mereka akan mendapatkan hasil tambang yang banyak di hari itu. Glück Auf juga tertulis di bangunan utama kampus, dimana hingga saat ini, budaya Leder Sprung dan Philistrierung masih dijalankan.
Logo di gedung utama Montanuniversität Leoben ( oehontour.tumblr.com)

Leder Sprung adalah seremoni penambang jaman dahulu, dimana mereka harus melompati sebuah bendera kulit, sebagai tanda solidaritas sesama pekerja tambang ketika mereka direkrut dalam sebuah komunitas tambang. Mereka mengenakan Berg Kittel, sebuah setelan baju berwarna hitam, pakaian pekerja tambang abad 18 dulu. Di Leoben sendiri, mahasiswa masih menggunakannya untuk mengikuti beberapa ujian, terutama jika ujiannya lisan maupun ujian akhir kelulusan. Setelah kelulusan, mahasiswa Leoben melakukan seremoni menyanyikan lagu-lagu pekerja tambang jaman dulu, sambil mahasiswa yang lulus, diangkat oleh dua orang teman dekatnya, kemudian orang ketiga men-"jedug-jedug" kan punggung mahasiswa yang lulus tersebut ke sebuah papan besi di bawah tulisan Glück Auf. Setelah itu, mahasiswa diarak ke tengah kota dengan iring-iringan pemusik dan diarak di atas kuda sampai hauptplatz, kemudian si wisudawan harus berorasi sambil memeluk patung Bergmann, kemudian melompat dari patung itu ke kolam.

Budaya ini juga saya alami ketika saya lulus sarjana dari Bandung, istilahnya adalah penon-him-an.
Ledersprung lazim dilakukan di daerah yang memegang budaya tambang di negara berbahasa Jerman. Gambar di atas adalah ledersprung di Voitsberg saat perayaan Barbarafeier (www.kleinezeitung.at)
Philistrierung di gerbang depan gedung utama Montan (http://diepresse.com/)
Bergparade atau parade tambang, memperingati ulang tahun Montanuniversität Leoben pada Oktober 2015 lalu (http://175jahre.unileoben.ac.at/de/4914/)
Bergmannsbrunnen Leoben, sudah ada sejak tahun 1799 (sumber: http://www.meinbezirk.at/)
Hauptplatz Leoben menyambut perayaan Natal dan tahun baru

Kampus ini diinisasi oleh Kaisar Erzherzog-Johann, seorang Kaisar yang menjabat di Provinsi Styria. Kaisar ini sangat mencintai ilmu pengetahuan, sehingga disaat dia menjabat, dia membuat kampus Montan di Leoben dan TU Graz. Patung dari Kaisar ini bisa dilihat di Hauptplatz kota Graz, dimana patungnya diapit oleh empat patung lain. Empat patung tersebut menggambarkan empat sungai besar yang melintasi provinsi Styria, yaitu sungai Mur, sungai Drau, sungai Enns, dan sungai Sann.
Ptung Erzherzog-Johann dikelilingi 4 patung lain. Patung ini bisa dikunjungi di Hauptplatz (pusat kota) Graz (sumber: wikimedia.org)

Dan, untuk menutup sejarah Leoben ini, saya ucapkan 
Glück Auf

Andy Yahya Al Hakim
Penulis adalah mahasiswa Doktorat bidang Geologi di Montanuniversität Leoben sejak 2015 yang lalu. Penulis mempunyai hobi beraktivitas di alam dengan bersepeda dan aktif menulis di blog edukasi andyyahya.com dan anakbertanya.com
Share:

Thursday, September 24, 2015

Unsur Tanah Jarang Nan Berlimpah

Ini kedua kalinya saya menulis bukan di blog saya sendiri. Kali pertama saya menulis untuk sebuah blog "anakbertanya.com" yang dibuat untuk menjawab pertanyaaan anak-anak usia 10-12 tahun. Pada saat itu, saya membantu menjawab pertanyaan, "Mengapa ada banyak gunung berapi di Indonesia?"

Kali ini, saya menulis untuk sebuah blog bernama "bersains" yang digagas oleh seorang Professor Hendra Gunawan, Dosen di Prodi Matematika serta Prof Bambang Hidayat (Professor Emeritus di Prodi Astronomi). Saya cantumkan kutipan dari redaksinya, tulisan lengkapnya silahkan baca di blog bersains ya.

----------------------------------------------------------------------------------------------------------------------------------

Arsip Bulanan: September 2015

UNSUR TANAH JARANG NAN BERLIMPAH

Apakah anda pernah mendengar ‘unsur tanah jarang’ atau Rare Earth Element (REE)? Ahli kimia dari Rusia bernama Dmitri Mendeleev, pada tahun 1800-an telah memprediksi adanya unsur tanah jarang dalam tabel periodik kimia buatannya. Waktu itu, unsur tanah jarang belum ditemukan, namun keberadaannya telah diperkirakan oleh Mendeleev.  Meski namanya unsur tanah yang ‘jarang’, ternyata keberadaannya di permukan bumi sebenarnya berlimpah.

Pada artikel blog Bersains edisi September 2015 kali ini, Andy Yahya Al Hakim membahas mengenai unsur tanah jarang, juga unsur grup platinum (PGE, Platinum Group Element), dan kemajuan Indonesia dalam teknologi  nuklir yang dilakukan oleh Badan Teknologi Nuklir Nasional (BATAN). Bahkan pada 15 September 2015, Indonesia mendapatkan apresiasi dari International Atomic Energy Agency (IAEA).



========================================================================
UNSUR TANAH JARANG NAN BERLIMPAH?

Sejak tahun 1800-an, sudah banyak ahli kimia yang mencoba untuk merumuskan tabel periodik kimia, namun tabel ini baru diakui pada tahun 1869, saat dipublikasikan oleh ahli kimia dari Rusia, Dmitri Mendeleev. Mendeleev mempresentasikan tabel itu di Russian Physico-chemical Society, yang kemudian dipublikasikan di Zeitschrift fϋr Chemie (Gambar 1). Pada tahun itu, sebanyak 60 unsur dari total 118 unsur disusun berdasarkan kenaikan masa atom dan Mendeleev membiarkan beberapa unsur yang belum diketahui dibiarkan kosong. Tabel periodik awalnya disusun dengan arah horizontal untuk menunjukkan grup, sedangkan golongan dalam arah vertikal. Hal ini berbeda dengan tabel periodik yang kita jumpai sekarang.

Apa yang menarik dari tabel periodik Mendeleev tersebut? Mendelev berhasil memprediksi beberapa unsur tanah jarang (REE) dan unsur grup platinum (PGE). Jika pada tahun tersebut sudah ada beberapa unsur yang ditemukan dan diprediksi oleh Mendeleev, namun mengapa masih disebut unsur tanah jarang? 
Gambar 1. Susunan tabel periodik dari Mendeleev tahun 1869

Unsur Tanah Jarang (Rare Earth Element - REE)
Rare Earth Element, yang diterjemahkan menjadi unsur tanah jarang adalah 17 unsur yang menyusun sistem periodik. Unsur ini tersusun atas Scandium (Sc)-Yttrrium (Y) dan 15 unsur lain dari grup lantanida, secara berturut-turut: Lanthanum (La)-Cerium (Ce)-Praseodymium (Pr)-Neodymium (Nd)-Promethium (Pm)-Samarium (Sm)-Europium (Eu)-Gadolinium (Gd)-Terbium (Tb)-Dysprosium (Dy)-Holmium (Ho)-Erbium (Er)-Thulium (Tm)-Ytterbium (Yb)-Lutetium (Lu). Pada tahun 1869, Mendeleev sudah berhasil menghitung masa atom dari unsur La-Ce, yang sebelumnya sudah diklasifikan sebagai logam tanah jarang. Terminologi unsur ini mengacu pada keterdapatan dari unsur tanah jarang yang sangat sedikit pada akhir tahun 1700-, dan terbukti memang jumlah dari logam tanah jarang ini dalam jumlah yang signifikan dalam deposit tunggal. Hal ini yang membuat terminologi unsur tanah jarang tetap digunakan hingga saat ini.

Sangat jarang di kerak bumi?
Unsur yang terkandung dalam mineral atau batuan harus mengalami proses konsentrasi untuk mencapai kadar yang ekonomis untuk ditambang. Perbandingan antara kandungan unsur dibandingkan keterdapatannya di kerak bumi disebut sebagai konsentrasi Clarke. Jika konsentrasi suatu unsur masih lebih rendah dibandingkan konsentrasinya di alam, maka unsur itu belum bernilai ekonomis. Sebagai contoh, konsentrasi Clarke dari emas (Au) di kerak bumi sebesar 0,004 ppm. Untuk mencapai nilai ekonomis, emas harus mengalami konsentrasi sebesar 1.000 kali lipat atau sebesar 4 ppm sehingga emas bernilai ekonomis. Part-per-million atau ppm adalah istilah yang digunakan untuk menyatakan kadar dari suatu unsur dalam satu per-sejuta, dalam ilmu kebumian biasanya dinyatakan sebagai gram per ton.

Gambar 2. Ilustrasi volume satu-per-seribu, ppm, ppb, ppt

Sebagai gambaran, konsentrasi elemen tanah jarang di kerak bumi rata-rata berkisar 150 hingga 220 ppm, dibandingkan keterdapatan unsur seng (Zn) sebesar 70 ppm, tembaga (Cu) sebesar 50 ppm dan emas berkisar 10 ppm. Keterdapatan unsur elemen tanah jarang (Sc,Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu) di kerak bumi masih lebih banyak dibandingkan unsur perak (Ag) dan emas (Au), raksa (Hg), bahkan beberapa unsur elemen tanah jarang keterdapatannya masih lebih banyak dibandingkan uranium (U) (Gambar 3).
Gambar 3. Keterdapatan beberapa unsur di kerak bumi 

Dimana mendapatkan elemen tanah jarang?
Apple, perusahaan dari Steve Jobs, tahun 2014 lalu sempat dibuat “geger” karena adanya tuduhan tentang tingginya jam kerja di perusahaan perakitan elektronik itu, serta adanya isu tentang eksploitasi anak di bawah umur di tambang timah di pulau Bangka Belitung. Apple sempat dianggap sebagai salah satu perusahaan yang menampung banyak timah “illegal” dari koperasi maupun perusahaan pengepul timah, walaupun menurut dari hasil audit hal tersebut tidak terbukti. Apple pun membuat satu laman berjudul “supplier-responsibility”, untuk menjelaskan bahwa selama proses pembuatan produk berlogo apel yang digigit ini sudah berwawasan lingkungan. Mirisnya, Indonesia yang jelas-jelas menambang timah tersebut tidak dicantumkan sebagai eksportir, malah negara kecil di selat Malaka yang tertulis sebagai salah satu penyuplai untuk Apple (http://www.apple.com/supplier-responsibility/ ).

Timah terakumulasi di sepanjang meander (lekukan sungai), di dasar sungai dan laut, terbentuk akibat lapukan dari batuan granit yang disebut sebagai endapan greisen. Logam timah di tambang di sekitar Selat Malaka ditambang dengan dua metode, tambang terbuka (open pit) di daratan dan tambang lepas pantai dengan menggunakan kapal keruk dan kapal sedot. Di daratan, singkapan timah disemprot dengan pompa air yang bertekanan tinggi (dalam istilah tambang mesin semprot disebut monitor), untuk memberaikan timah untuk kemudian disaring dan dialirkan untuk dicuci, untuk dimurnikan di smelter.

Beberapa lokasi penghasil timah antara lain pulau Bangka dan Belitung, Singkep, Bengara (Kalbar) merupakan sabuk timah yang membentang di sepanjang Selat Malaka hingga Malaysia, dan Thailand. Timah diekstrak dari mineral kasiterit (SnO2), dengan mineral asosiasi ilmenite (FeTiO3), zirkon (ZrSiO4), monazit (Ce,La,Nd,Th)(PO4,SiO4), xenotim (YPO4), markasit (FeS2), hematit (Fe2O3), rutil (TiO2), allanit (Ce,Ca,Y,La)2(Al,Fe+3)3(SiO4)3(OH), pirit (FeS2) dan turmalin (Na,Ca)(Mg,Li,Al,Fe2+)3Al6(BO3)3Si6O18(OH)4. Beberapa mineral tersebut (monazit, xenotim dan allanit) mengandung elemen tanah jarang seperti Ce-La-Nd-Th-Y yang harganya sangat jauh dibandingkan dengan timah (Sn) sebagai logam utama yang didapat dari tambang timah (Gambar 4).

Lagi-lagi, Indonesia hanya bisa mengekstrak logam timah (Sn) dari smelter yang ada di Indonesia. Dengan kondisi ekonomi global saat ini, banyak smelter yang berhenti beroperasi karena harga logam, terutama timah, nikel, emas dan tembaga jauh lebih rendah daripada tahun-tahun sebelumnya. Perusahaan lebih memilih melakukan perampingan jumlah pekerja dan tidak melakukan penambangan dalam skala besar.

Selain dari aktivitas penambangan timah, mineral seperti ilmenit, rutil dan zirkon juga menjadi mineral ikutan di aktivitas penambangan pasir besi di pantai. Pantai Barat Sumatera dan Pantai Selatan Jawa pun juga mengandung unsur tanah jarang, walaupun dengan jumlah yang kurang signifikan dibanding endapan greisens di Bangka Belitung.
Gambar 4. Perbandingan harga logam per-September 2015(http://mineralprices.com/)

Unsur Grup Platinum (Platinum Group Element)
Mungkin masih banyak yang belum banyak paham tentang unsur yang berada di golongan ini. Platinum-Group Element sering disingkat menjadi PGE (beberapa referensi menulis Platinum-Group Metals-PGM) adalah unsur yang keterdapatannya di alam lebih sedikit dibandingkan elemen lain yang ada di alam. Elemen grup platinum dan logam mulia (precious metal) menjadi unsur yang memiliki nilai ekonomis yang sangat tinggi. Enam unsur lain yang termasuk dalam unsur grup platinum adalah Ruthenium (Ru), Rhodium (Rh), Paladium (Pd), Osmium (Os), Iridium (Ir) dan Platinum (Pt).



Sama seperti elemen tanah jarang (REE), unsur ini digunakan sebagai katalis pada industri otomotif, kimia dan penyulingan di industri perminyakan (petroleum refining industries). Sejauh ini, Afrika Selatan tercatat menjadi negara penghasil PGM terbesar di dunia dengan kontribusi 80% produksi platinum dan 44% produksi palladium. PGM didapat dari sebuah kompleks tambang yang bernama Bushveld Complex, 9 dari 10 tambang ditambang dengan metode tambang bawah tanah.

Mineral Radioaktif, REE dan PGM?
Bicara tentang radioaktif, banyak orang langsung menganalogikan dengan uranium, dengan bom atom yang dijatuhkan di Jepang, atau dengan pembangkit listrik tenaga nuklir. Pembangkit listrik tenaga nuklir belum pernah kehabisan berita untuk dibahas, mengingat dampaknya yang sangat massif karena merupakan solusi energi di masa mendatang, namun juga kegagalan pembangkit jenis ini membuat banyak orang masih “ngeri-ngeri sedap” kalau pembangkit ini dibangun di Indonesia. Tercatat, kebocoran pembangkit pernah terjadi di Chernobyl di Ukraina tahun 1986 dan di Fukushima tahun 2011 akibat gempa dengan magnitudo 9 yang memicu adanya tsunami, serta beberapa kebocoran lain pernah terjadi di Inggris (Sellafield-1957), Rusia (Kysthym-1957), Amerika Serikat (Idaho-1961, Three Mile Island-1979), Perancis (Saint Laurent-1969) dan Argentina (Buenos Aires-1983), Brazil (Goinia-1987), Jepang (1999). Tahun 2015 ini, pembangkit listrik tenaga nuklir di Iran masih terus dibahas mengingat kekhawatiran memanasnya suasana di negara Teluk.

Pembangkit listrik ini diekstrak dengan menggunakan reaksi fisi dari mineral yang bernama uraninit/pitchblende (UO2). Uranium adalah merupakan elemen paling berat yang ditemukan secara alami di kerak bumi. Radioaktivitas pada mineral disebabkan adanya inklusi dari elemen yang mengandung elemen radioaktif seperti Kalium (K), uranium (U) dan Thorium (Th). Beberapa elemen tanah jarang seperti samarium, neodymium, gadolinium serta unsur grup golongan platinum seperti platinum, osmium, mengandung tingkat radioaktivitas secara natural di alam. Mineral radioaktif ini akan memancarkan radiasi sinar alfa, beta atau gamma akibat komposisi dari isotopnya yang tidak stabil. Dari tiga jenis peluruhan radiasi dari elemen radioaktif, radiasi sinar gamma membawa dampak yang perlu diwaspadai, terutama kepada makhluk hidup. Jika radiasi sinar alfa dapat di blok dengan kertas atau kulit, sinar beta dapat di blok dengan foil, sinar gamma ini hanya bisa dinetralisasi dengan mengisolasi dengan elemen yang mempunyai nomor atom yang tinggi dengan densitas yang lebih besar, sebagai contoh timbal (lead-Pb). Peluruhan Electron Capture (EC) sangat jarang dijumpai dan terjadi akibat adanya pengikatan nukleus yang kaya akan proton mengikat satu atom netral dari orbital lain.

Gambar 5. Ilustrasi radiasi sinar alfa, beta dan gamma


Jika membahas tentang mineral yang bersifat radioaktif, uraninit bukan merupakan satu-satunya mineral yang mempunyai sifat radioaktif. Beberapa mineral lain seperti monazit, zirkon, apatit dan xenotim juga mengandung tingkat radiasi yang berbeda-beda. Radioaktivitas uranium diukur dengan menggunakan alat bernama geiger counter atau scintillometer. Alat ini mengukur intensitas radiasi dengan mengukur fluktuasi dari indeks refraksi dari udara akibat adanya variasi temperatur, kelembapan dan tekanan. Pada bagian dalam scintillometer, terdapat beberapa sensor (transmitter) yang mengidentifikasi gelombang optik atau radio, yang berundulasi (scintillation). 

Tabel 2. Keterdapatan Unsur Radioaktif di Alam
Unsur
Isotop Simbol
Keterdapatan di Alam
Waktu Paruh (tahun)
Peluruhan
130Te
33.97%
2,400,000,000,000,000,000,000.00

50V
0.25%
390,000,000,000,000,000.00
EC
96Zr
2.80%
360,000,000,000,000,000.00

149Sm
13.80%
10,000,000,000,000,000.00
Alpha
148Sm
11.30%
7,000,000,000,000,000.00
Alpha
186Os
1.58%
2,000,000,000,000,000.00
Alpha
145Nd
8.30%
1,100,000,000,000,000.00
Alpha
192Pt
0.79%
1,000,000,000,000,000.00
Alpha
115In
95.70%
600,000,000,000,000.00
Beta
152Gd
0.20%
110,000,000,000,000.00
Alpha
123Te
0.89%
13,000,000,000,000.00
EC
190Pt
0.01%
690,000,000,000.00
Alpha
147Sm
15.00%
108,000,000,000.00
Alpha
87Rb
27.83%
49,000,000,000.00
Beta
187Re
62.60%
45,000,000,000.00
Beta
176Lu
2.59%
22,000,000,000.00
Beta
232Th
100.00%
14,000,000,000.00
Alpha
238U
99.28%
4,460,000,000.00
Alpha
40K
0.01%
1,250,000,000.00
Beta
235U
0.72%
704,000,000.00
Alpha
sumber: http://webmineral.com/help/Radioactivity.shtml tanggal akses 19 September 2015

PGM di Indonesia?
USGS dan Direktorat Sumberdaya Mineral Indonesia pada tahun 1990 telah melakukan eksplorasi dengan mengumpulkan sampel konsentrat dulang dari beberapa lokasi di Jawa, Sumatera, Kalimantan, Sulawesi. Umumnya, PGM dilaporkan dari beberapa sungai (endapan plaser) yang berasosiasi dengan endapan pasir besi, emas, intan dan kromit. Indikasi lokasi PGM dilaporkan di Cilacap, Jampang Kulon; di Sumatera dilaporkan di Woyla, Kotonapan, Muara Sipongi, Bengkalis; di Kalimantan dilaporkan di Cempaka, Riam Pinang, Pasir, Tabang, Sungai Marah dan di Sulawesi dilaporkan di Barru, Danau Towuti, Momo dan Baubuang (USGS, 1990). Eksplorasi pendahuluan ini masih bersifat prospektif dan perlu dilakukan studi lanjutan.

Henry Hilliard (2003) juga menuliskan dalam laporannya di USGS (United States Geological Survey), bahwa Indonesia, Cina, Papua Nugini dan Filipina, serta beberapa lokasi lain, diyakini juga menghasilkan PGM, namun belum dilaporkan berapa jumlah yang dihasilkan. Jumlah ini oleh Hilliard diklasifikasikan sebagai produksi dari Jepang, karena proses pemurnian dilakukan di negara matahari terbit (Tabel 2).
Tabel 2. Produksi Platinum-Group Metals di dunia (Hilliard, 2003)
 
Indonesia Masa Mendatang
Pada 15 September 2015, Yukiya Amano, General Director IAEA (International Atomic Energy Agency) memberikan apresiasi ke Indonesia dalam pidato pembukaannya di Konferensi International Atomic Energy Agency ke-59 di Wina, Austria. Indonesia memberikan bantuan untuk korban bencana gempa bumi di Nepal bulan April yang lalu, dengan pemanfaatan dan aplikasi teknologi nuklir dalam bidang pangan. Indonesia memanfaatkan teknologi iradiasi, pada makanan siap saji untuk korban bencana, yaitu teknologi nuklir memungkinkan bahan makanan menjadi lebih tahan lama namun tetap aman untuk dikonsumsi.

Teknologi ini tidak hanya dimanfaatkan dalam bidang pangan. Dalam bidang pertanian, teknologi nuklir juga dapat dimanfaatkan untuk, yaitu pemuliaan tanaman menggunakan teknologi irradiasi, dimana Indonesia telah memperoleh penghargaan outstanding achievement dari IAEA dan FAO. Indonesia juga siap membantu negara-negara berkembang lainnya untuk mengembangkan aplikasi teknologi nuklir dalam pemuliaan tanaman tersebut, khususnya kepada negara-negara di kawasan Pasifik.

Dari data di atas, makin banyak pekerjaan rumah untuk generasi mendatang di Indonesia. Pemerintahan baru pun diuji keseriusannya untuk mengimplementasikan larangan ekspor bahan mentah sejak tahun 2014 yang lalu, yang ternyata belum diaplikasikan dengan pembangunan smelter di Indonesia.  Smelter yang ada di Indonesia saat ini digunakan untuk mengolah logam nikel, besi/baja, tembaga, aluminium, tembaga dan mangan. Masih banyak unsur lain yang masih bisa diekstrak dari mineral yang didapat di alam, terutama mengekstrak elemen tanah jarang dan golongan grup platinum . Saat ini, sementara kita hanya bisa “legowo” unsur-unsur ikutan dari proses ekstraksi dari unsur utama terbawa di mineral-mineral untuk diolah di negara lain.
BATAN, 2010 (MGEI-IAGI, 2011)
Sumaryanto, IAEA- 2014 

Tantangan di masa mendatang, rantai ilmu pengetahuan dan teknologi nuklir perlu dirancang secara terintegrasi. Rantai yang dimulai dari pemahaman tentang keterdapatan mineral strategis tersebut di alam, teknologi pengambilan material, serta ekstraksi bahan mentah menjadi barang setengah jadi dan bahan jadi. Kemajuan teknologi nuklir yang sudah ditunjukkan Badan Teknologi Nuklir Nasional (BATAN) harus di imbangi kemampuan generasi penerus bangsa ini, serta kemauan pemerintah untuk mendukung industri strategis untuk anak cucu di masa mendatang. Sangat indah rasanya melihat sumberdaya alam Indonesia bisa dipelajari, diolah, dimanfaatkan untuk kemajuan bangsa yang besar ini.

Ibarat sedang bertanding sepakbola, kiper yang tangguh tidak ada artinya tanpa penyerang yang hebat, serta tim yang hebat tidak akan pernah mungkin tercipta tanpa kerjasama tim yang baik. Mustahil negara ini sukses tanpa kerjasama semua elemen penunjangnya. Jadi, mari bekerja bersama-sama, tidak ada kontribusi yang sia-sia untuk bangsa ini.

Andy Yahya Al Hakim, MT
Penulis menyelesaikan studi di Teknik Pertambangan ITB pada tahun 2011 dan tahun 2013, kemudian bekerja sebagai Asisten Akademik di Kelompok Keahlian Eksplorasi Sumberdaya Bumi FTTM – ITB. Saat ini penulis sedang menempuh program Doktor di Montanuniversität Leoben, Austria dalam bidang mineralogi dan geologi ekonomi. Penulis juga aktif menulis di blog edukasi tentang geologi, petualangan dan motivasi di Geo-Educative Blog yang dapat di akses di laman andyyahya.com.

Referensi
 http://www.periodni.com/rare_earth_Elements.html tanggal akses 18 September 2015
http://webmineral.com/help/Radioactivity.shtml tanggal akses 19 September 2015
Hilliard, H.E. 2003. Platinum-Group Metals: USGS Mineral Resources. Open-File Report.
Zientek, M.L., Page, N.J. 1990. Consultancy Services in Platinum-Group Mineral Exploration for the Directorate of Mineral Resources. Open-File Report 90-527. USGS  

Zientek, M.L., Pardiarto, B., Simandjuntak, H.R.W., Wikrama, A., Oscarson, R.L., Meier, A.L., Carlson, R.R., 1992. Placer and lode platinum group minerals in south Kalimantan, Indonesia — evidence for derivation from Alaskan-type ultramafic instrusions. Aust. J. Earth Sci. 39, 405–417.
Share:

Blog Archive

Kontak ke Penulis

Name

Email *

Message *